

E-Mail: sales@optoplex.com, www.optoplex.com

Balanced Photo-Receivers

Revision 2019

1. INTRODUCTION

1.1 General Introduction

This document describes a balanced photoreceiver for balanced detection.

Coherent detection has been found increasing applications in fiber sensing as well as in conventional RF and optical communications. In the past several years, coherent technology has been advanced dramatically in high-speed optical communications. Whit this, key parts and components (such as narrow linewidth lasers, optical hybrid, balanced photo-receivers and DSP, etc.) are commercially available and cost-effective for many applications beyond telecommunications.

Optoplex has developed a series of products for coherent applications. They are

Figure 1. Photo of a Balanced Receiver of 100MHz BW

- 90deg optical hybrid
- 2x8 coherent mixer
- Integrated 40G coherent receiver (40G ICR)
- Integrated 100G coherent receiver (100G ICR)
- 90deg optical hybrid integrated with balanced receiver
- 2x8 coherent mixer with photodiode outputs, and
- Balanced Photoreceivers

Balanced Photoreceiver

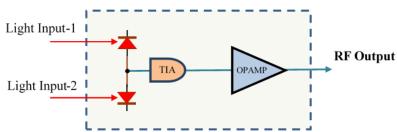


Figure 2. Functional Block Diagram of the Balanced Photoreceiver

Optoplex's balanced photoreceiver is designed for optical coherent detection for non-telecom applications. It features a pair of photodiodes that are well matched and balanced in responsivity, bandwidth and noise, etc. The outputs of the photodiodes are amplified by low-noise TIA to produce a single RF output that is proportional to the difference between the photo-currents from the two photodiodes.

The photoreceiver has a 3dB bandwidth of about 100MHz. The RF output swing is +/-3.6V for high impedance load (± 1.8 V into 50 Ω). The CMRR is better than 20dB (with a typical value of 30dB).

E-Mail: sales@optoplex.com, www.optoplex.com

1.2 Applications

The balanced photoreceivers are used with a 90deg optical hybrid or a polarization-diversified coherent mixer for coherent detection in Coherent Doppler Lidar, DAS (distributed acoustic sensing system), OCT (optical coherent tomorgraphy) in biomedical optics, Coherent OTDR (Optical Time-Domain Reflectometry), Coherent OSA (optical spectrum analyzer) etc.

Two typical examples of coherent detection are shown in Fibure 3 and 4.

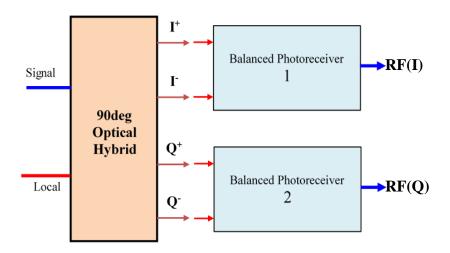


Figure 3. Functional Block Diagram of a 90deg Optical Hybrid integrated with 2 Balanced Photoreceivers

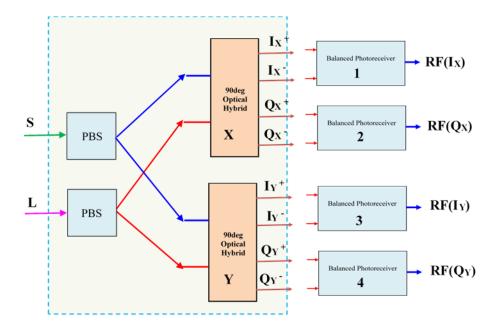


Figure 4. Functional Block Diagram of a polarization-diversified 90deg Optical Hybrid (also called 2x8 Coherent Mixer) integrated with 4 Balanced Photoreceivers

Optoplex has the 90deg hybrid integrated with balanced receivers (as shown in Figure 3) and the 2x8 coherent mixer integrated with balanced receivers (as shown in Figure 4). Visit www.optoplex.com for detail product information.

2. ABSOLUTE MAXIMUM RATINGS

No	Parameter	Symbol	Unit	Conditions	Ratings		Notes
INO				Conditions	Min	Max	Notes
2.1	Input Optical Power	P _{in_Max}	mW		1	300	
2.2	Operating Temperature	Tc	°C		-5	+70	
2.3	Operating Humidity	-	%RH	T _c = +65°C, Non- condensing	5	85	
2.4	Storage Temperature	T _{stg}	°C		-40	+85	
2.5	Storage Humidity	-	%RH	T _c = +85°C, Non- condensing	5	85	

3. OPERATING CONDITIONS

No	Parameter	Symbol	Unit	Conditions	Ratings			Notes
					Min	Тур.	Max	Notes
3.1	Input Optical Power	P _{in_Max}	mW		-		300	
3.2	Operating Temperature	T _c	°C		-5		+65	
3.3	Operating Humidity, Relative, 40°C non- condensing	-	%RH		5		85	
3.4	Storage Temperature	T_{stg}	°C		-40		+85	
3.5	Storage Humidity	-	%RH		5		85	

4. BALANCED PHOTORECEIVER (100MHZ BW)

4.1 Optical-Electrical Characteristics

#	Parameter	Unit	Min	Тур.	Max	Note
4.1.1	Type of Detector		InGaAs			
4.1.2	Wavelength Range	nm	1310		1670	
4.1.3	Responsivity, Typical	V/W		8		
4.1.4	RF Output Bandwidth (3dB)	MHz	DC		100	
4.1.5	Common Mode Rejection Ratio (CMRR)	dB	20	30		
4.1.6	Transmission Gain	V/A		25x10 ³		
4.1.7	Conversion Gain RF Output	V/W		25x10 ³		
4.1.8	CW Saturation Power	μW		72		@1550nm
4.1.9	NEP (DC - 10MHz)	pW/ √Hz		3.8		
4.1.10	Integrated Noise (DC - 100MHz)	nW _{RMS}		65		
4.1.11	Overall Output Voltage Noise	mV _{RMS}		2.2		
4.1.12	RF Output Impedance	Ω		50		
4.1.13	RF Output Voltage Swing	V			+-3.6	
4.1.14	DC Offset RF Output	mV			+/-3	
4.1.15	Max Optical Input Power	mW			20	
4.1.16	Power Supply, Voltage	V			+/-12	
4.1.17	Power Supply, Current	mA			200	
4.1.18	Output Coupling		AC-coupled output			
4.1.19	Electrical Output Interface		SMA			

4.2 PD Responsivity

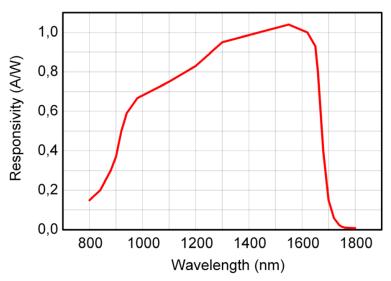


Figure 4.1, Typical Responsivity (for illustration only)

4.3 CMRR

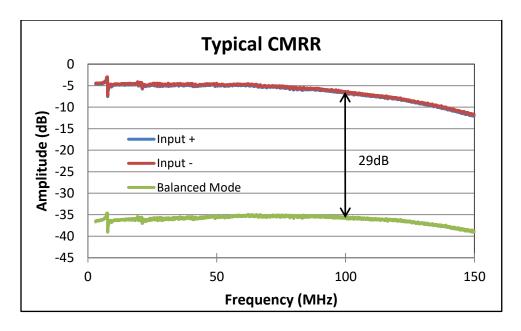


Figure 4.2, Typical CMRR

5. PHYSICAL REQUIREMENTS

5.1 Mechanical Specification

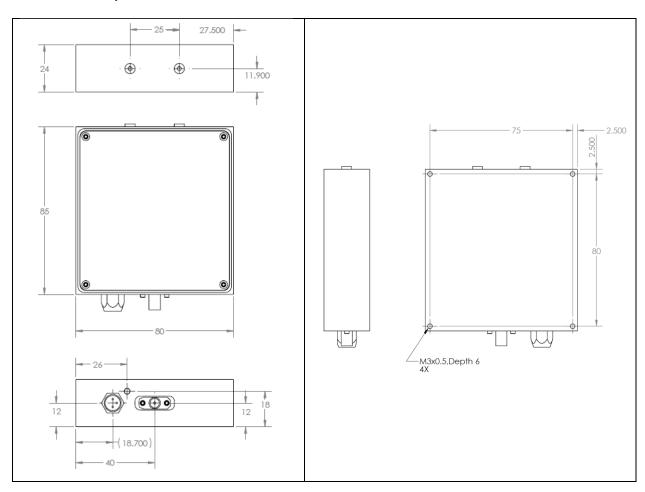


Figure 5.1, Mechanical drawing of the balanced photoreceiver

5.2 Electrical Specification

Power Supply: (Optional)
• ±12V DC, 800mA.

Electrical Output

- There are two sets of balanced photoreceivers inside the module. At the output, there are RF-Output-1 and RF-Output-2 with SMA connector
- AC-coupled output, or DC-coupled output. Customer specific.

5.3 Optical Input Ports

- Fiber: SMF
- FC/APC, or LC/UPC, or customer specific.

6. ORDERING INFORMATION

Part Number	Description
BR-C0100B1AC	Balanced Photoreceivers, 100MHz , SMF, FC/APC Inputs, SMA Outputs, AC-Coupled, 12VDC
BR-C0100B1DC	Balanced Photoreceivers, 100MHz , SMF, FC/APC Inputs, SMA Outputs, DC-Coupled, 12VDC
BR-C0200B1AC	Balanced Photoreceivers, 200MHz , SMF, FC/APC Inputs, SMA Outputs, AC-Coupled, 12VDC
BR-C0200B1DC	Balanced Photoreceivers, 200MHz , SMF, FC/APC Inputs, SMA Outputs, DC-Coupled, 12VDC
BR-C0350B1AC	Balanced Photoreceivers, 350MHz , SMF, FC/APC Inputs, SMA Outputs, AC-Coupled, 12VDC
BR-C0350B1DC	Balanced Photoreceivers, 350MHz , SMF, FC/APC Inputs, SMA Outputs, DC-Coupled, 12VDC

Accessory:

Power Supply: Sold Separately
• ±12V DC, 800mA.

7. CONTACT INFORMATION

Headquarter:

Optoplex Corporation

48500 Kato Road Fremont, CA 94538 USA

Tel: (510) 490-9930 Fax: (510) 490-9330

info@optoplex.com www.optoplex.com